Shared Spectrum to Fuel 5G NR & LTE Small Cell RAN Market, Says SNS Telecom & IT

January 8, 2021 — SNS Telecom & IT‘s latest research report indicates that annual spending on 5G NR and LTE small cell RAN (Radio Access Network) infrastructure operating in shared spectrum will reach nearly $4 Billion by 2024 to support a variety of uses including private cellular networks for enterprises and vertical industries, densification of mobile operator networks, FWA (Fixed Wireless Access), and neutral host connectivity.

As the 5G era advances, the cellular communications industry is undergoing a revolutionary paradigm shift, driven by technological innovations, liberal regulatory policies and disruptive business models. One important aspect of this radical transformation is the growing adoption of shared and unlicensed spectrum – frequencies that are not exclusively licensed to a single mobile operator.

Telecommunications regulatory authorities across the globe have launched innovative frameworks to facilitate the coordinated sharing of licensed spectrum, most notably the United States’ three-tiered CBRS scheme for dynamic sharing of 3.5 GHz spectrum, Germany’s 3.7-3.8 GHz licenses for private 5G networks, the United Kingdom’s shared and local access licensing model, France’s 2.6 GHz licenses for industrial LTE/5G networks, the Netherlands’ local mid-band spectrum permits, Japan’s local 5G network licenses, Hong Kong’s geographically-shared licenses, and Australia’s 26/28 GHz area-wide apparatus licenses. Collectively, these ground-breaking initiatives are catalyzing the rollout of shared spectrum LTE and 5G NR networks for a diverse array of use cases ranging from private cellular networks for enterprises and vertical industries to mobile network densification, FWA and neutral host infrastructure.

In addition, the 3GPP cellular wireless ecosystem is also accelerating its foray into vast swaths of globally and regionally harmonized unlicensed spectrum bands. Although existing commercial activity is largely centered around LTE-based LAA (Licensed Assisted Access) technology whereby license-exempt frequencies are used in tandem with licensed anchors to expand mobile network capacity and deliver higher data rates, the introduction of 5G NR-U in 3GPP’s Release 16 specifications paves the way for 5G NR deployments in unlicensed spectrum for both licensed assisted and standalone modes of operation.

Even with ongoing challenges such as the COVID-19 pandemic-induced economic slowdown, SNS Telecom & IT estimates that global investments in 5G NR and LTE small cell RAN infrastructure operating in shared and unlicensed spectrum will account for more than $1.3 Billion by the end of 2021. The market is expected to continue its upward trajectory beyond 2021, growing at CAGR of approximately 44% between 2021 and 2024 to reach nearly $4 Billion in annual spending by 2024.

The “Shared & Unlicensed Spectrum LTE/5G Network Ecosystem: 2021 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents a detailed assessment of the shared and unlicensed spectrum LTE/5G network ecosystem including the value chain, market drivers, barriers to uptake, enabling technologies, key trends, future roadmap, business models, use cases, application scenarios, standardization, spectrum availability/allocation, regulatory landscape, case studies, ecosystem player profiles and strategies. The report also provides global and regional forecasts for shared and unlicensed spectrum LTE/5G RAN infrastructure from 2021 till 2030. The forecasts cover two air interface technologies, two cell type categories, two spectrum licensing models, 12 frequency band ranges, seven use cases and five regional markets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

The key findings of the report include:

  • Even with ongoing challenges such as the COVID-19 pandemic-induced economic slowdown, SNS Telecom & IT estimates that global investments in LTE and 5G NR RAN infrastructure operating in shared and unlicensed spectrum will account for more than $1.3 Billion by the end of 2021. The market is expected to continue its upward trajectory beyond 2021, growing at CAGR of approximately 44% between 2021 and 2024 to reach nearly $4 Billion in annual spending by 2024.
  • Breaking away from traditional practices of spectrum assignment for mobile services that predominantly focused on exclusive-use national licenses, telecommunications regulatory authorities across the globe have launched innovative frameworks to facilitate the coordinated sharing of licensed spectrum.
  • Notable examples include the United States’ three-tiered CBRS scheme for dynamic sharing of 3.5 GHz spectrum, Germany’s 3.7-3.8 GHz licenses for private 5G networks, the United Kingdom’s shared and local access licensing model, France’s 2.6 GHz licenses for industrial LTE/5G networks, the Netherlands’ local mid-band spectrum permits, Japan’s local 5G network licenses, Hong Kong’s geographically-shared licenses, and Australia’s 26/28 GHz area-wide apparatus licenses.
  • Collectively, these ground-breaking initiatives are catalyzing the rollout of shared spectrum LTE and 5G NR networks for a diverse array of use cases ranging from private cellular networks for enterprises and vertical industries to mobile network densification, FWA and neutral host infrastructure.
  • In particular, private LTE and 5G networks operating in shared spectrum are becoming an increasingly common theme. For example, Germany’s national telecommunications regulator BNetzA (Federal Network Agency) has received more than a hundred applications for private 5G licenses in 2020 alone. Dozens of purpose-built 5G networks are already in operational use by the likes of aircraft maintenance specialist Lufthansa Technik, industrial conglomerate Bosch, automakers and other manufacturing giants.
  • Since the commencement of its local 5G spectrum licensing scheme, Japan has been showing a similar appetite for industrial-grade 5G networks, with initial field trials and deployments being spearheaded by many of the country’s largest industrial players including Fujitsu, Mitsubishi Electric, Sumitomo Corporation and Kawasaki Heavy Industries.
  • Among other examples, the 3.5 GHz CBRS shared spectrum band is being utilized to set up private LTE networks across the United States for applications as diverse as remote learning and COVID-19 response efforts in healthcare facilities. 5G NR-based CBRS implementations are also expected to emerge between 2021 and 2022 to better support industrial IoT requirements. Multiple companies including agriculture and construction equipment manufacturer John Deere have already made commitments to deploy private 5G networks in CBRS spectrum.
  • Mobile operators and other cellular ecosystem stakeholders are also seeking to tap into vast swaths of globally and regionally harmonized unlicensed spectrum bands for the operation of 3GPP technologies. Although existing deployments are largely based on LTE-LAA technology whereby license-exempt frequencies are used in tandem with licensed anchors to expand mobile network capacity and deliver higher data rates, standalone cellular networks that can operate solely in unlicensed spectrum – without requiring an anchor carrier in licensed spectrum – are beginning to emerge as well.
  • In the coming years, with the commercial maturity of 5G NR-U technology, we also anticipate to see 5G NR deployments in unlicensed spectrum for both licensed assisted and standalone modes of operation using the 5 GHz and 6 GHz bands as well as higher frequencies in the millimeter wave range – for example, Australia’s 24.25-25.1 GHz band that is being made available for uncoordinated deployments of private 5G networks servicing locations such as factories, mining sites, hospitals and educational institutions.

The report will be of value to current and future potential investors into the shared and unlicensed spectrum LTE/5G network market, as well as LTE/5G equipment suppliers, mobile operators, MVNOs, fixed-line service providers, neutral hosts, private network operators, vertical domain specialists and other ecosystem players who wish to broaden their knowledge of the ecosystem.

For further information concerning the SNS Telecom & IT publication “The Shared & Unlicensed Spectrum LTE/5G Network Ecosystem: 2021 – 2030 – Opportunities, Challenges, Strategies & Forecasts” please visit:

https://www.snstelecom.com/shared-spectrum

For a sample please contact: info@snstelecom.com

 

About SNS Telecom & IT

Part of the SNS Worldwide group, SNS Telecom & IT is a global market intelligence and consulting firm with a primary focus on the telecommunications and information technology industries. Developed by in-house subject matter experts, our market intelligence and research reports provide unique insights on both established and emerging technologies. Our areas of coverage include but are not limited to wireless networks, 5G, LTE, SDN (Software Defined Networking), NFV (Network Functions Virtualization), IoT (Internet of Things), critical communications, big data, smart cities, smart homes, consumer electronics, wearable technologies, and vertical applications.


About OnGo Alliance

The OnGo Alliance believes that 4G and 5G solutions in the CBRS band, utilizing shared spectrum, can enable both in-building and outdoor coverage and capacity expansion at massive scale. In order to maximize the CBRS band’s full potential, the OnGo Alliance aims to enable a robust ecosystem towards making OnGo solutions available. The mission of the OnGo Alliance is to evangelize 4G and 5G OnGo technology, use cases and business opportunities while simultaneously driving technology developments necessary to fulfill the mission, including multi-operator capabilities. The Alliance also established an effective product certification program for OnGo equipment in the U.S. 3.5 GHz band ensuring multi-vendor interoperability. For more information, please visit www.cbrsalliance.org and follow the OnGo Alliance on LinkedIn and Twitter.

Comments are closed.